
Custom App/APK Resources
DEF-2382

OVERVIEW

Some games/apps need to bundle non-game resources located inside the App (iOS) or APK

(Android) folders/packages. Examples include;

● Some ad extensions, ex. AdMob, expect external files (*.plist or *.xml) to be available

inside the root of the package.

● Localizing app names on iOS require language specific .plist-files (with localized app

name) inside subfolders of the App-folder/-package.

● Having screen size independent launch screens (would decrease the size of the app

compared to static image launch screens) on iOS the user need to supply a compiled

XCode storyboard (storyboardc).

● Dynamic libraries (.dll, .dylib etc) that needs to ship with the app/game and be placed in

such way that they are accessable by the binary.

Our current implementation only support custom resources that are bundled inside the darc file.

REQUIREMENTS

1. Should be able to specify custom resources and handle them in a generic way.

2. Need to handle file collisions (ex if both dependency-lib-1 and dependency-lib-2 supply

the same custom resource output MyApp.app/ApaBepa.plist).

3. Some resources should only be included in the bundled package on specific platforms

(no need to have Info.plist on Android).

4. There also needs to be an option to include certain resources for all platforms.

SOLUTIONS

Option in Game Project

We currently have an option for “custom_resources” in the game.project file for bundling

resources inside the darc file. One solution would be to add a new “bundle_resources” for each

platform, and also one “general” entry under the [project] category.

Example:



[project]
bundle_resources = /res/

Pros

● Familiar setup as current custom_resources

Cons

● Adding a dependency/extension that needs (and supplies) custom bundle resources will

need manual setup in the game.project file.

Extensions Resource Folder

We could leverage the extension system with custom resources being part of the folder structure

defining an extension.

1. Just like the extensions folder structure

have src/, lib/ and frameworks/ we add a new

res/ folder which include files/resources that will

be bundled into the packages.

2. common - Resources that will be

packaged on all platforms.

3. android - Resources that will be

packaged on all android targets (currently armv7

only).

4. x86-osx, x86_64-osx - Resources that

will be packaged for specific archs on OSX.

Pros

● Adding dependencys/extensions that

needs (and supplies) custom bundle resources

will automatically work, ie. automatically bundled for each platform without any manual

changes to the project/game.project.

Cons



● Adding custom resources to a project without an extension will not work out of the box.

The user would need to create an empty “dummy” extension with the res/ folder to

include resources.

Solution 3: Combine 1 & 2

Have the ability to have bundle resources both specified as an extension folder structure, but

also specify a project resource folder with the same structure. (This will make it easier to add

bundle resources for projects not using extensions, or want to supply resources expected by

certain extensions.)

Common for Solutions

All resources (common + platform specific) are copied during build/bundling (there is no need to

upload them if using the extension solution since the bundling still happens on the client).

We need to handle collisions of resources for both solutions;

- Alt 1, generate an error when a conflict occurs, just as regular resources when they have

outputs that conflict;

Conflicting output resource 'build/default/Test.plist‘ generated by the

following input files: [ext1/res/common/Test.plist] <->

[ext1/res/x86_64-darwin/Test.plist]

- Alt 2, as Alt1 but add the option to specify an “override” resources folder as explained in

Solution 1.

- Alt 3, add ability to exclude resources

[project]
exclude_bundle_resources = /extension1/res/ios/GoogleAds.plist

IMPLEMENTATION

After design meeting with Mathias, Andreas and Jakob we decided to go forward with Solution 3

in combination with Alt 3 for collision handling.



WIP!


