

Gamemaker Godot Defold

Workflow:
Create room, create object,
add sprite, add code

Workflow:
Create main_scene, create
child_scenes /nodes, add
scripts to nodes and use
editor

Create main collection, add
child collections / blueprints /
game objects/ add
components and scripts

room scene collection

object Child_scene or
scene_instance

Game object

Referencing objects:

Usually objects are in active
room, no url normally
required- just instance id or
more broadly object name

Referencing objects:

scene_tree() holds all scenes
and their children. To
access any scene or node
you must find it and reference
it in the tree
get_parent().get_node(‘node’)
etc

Referencing objects:

Collection /Scene tree
Defold uses an addressing
messaging system.

local url = msg.url(), msg.post
etc

Collision-mask based on
sprite

Collision node-area2d,
rigid2d,kinematic2d,
staticbody2d

Static, dynamic, kinematic,
trigger

cont... Collision shape must be
attached: polygon, rectangle,
circle

Collision shape must be
attached: polygon, rectangle,
sphere

Instancing:
instance_create_layers etc

The followings lines are
needed:

scene=Preload scene.tscn
newscene=scene.instance
add_child(newscene)

Factory components

Audio:

audio_play_sound, etc

Audio:

Add audiostream node

Audio:

Add audio component

Sprite:

Add sprite by loading or
creating it. Add animati0n by
editing sprite and adding
frames. Can use gif, png,
bmp

Sprite:

Add sprite node

Or animated_sprite node
Add frames to new animation

Sprite:

Add sprite component, select
atlus of images

Choose animation

Button sprite:

Make object add sprite and
choose mouse_left_released
with associated code

Button sprite:

Add texturebutton node, add
script (itself or parent),
connect signal, add code
under signal event in script

Button sprite:

Check the click event vs
cursor coordinates of sprite-
than do code

Destroy object:

instance_destroy()

Destroy object:

queue_free()

Delete object:

go.delete

Mouse coordinates:

mouse_x, mouse_y

Mouse coordinates:

get_global_mouse_position()

Or

get_viewport().get_mouse_po
sition()

Mouse coordinates:

function init(self)
 msg.post(".",
"acquire_input_focus")
 self.mpos_vec =
vmath.vector3(0, 0, 0)
end

function on_input(self,
action_id, action)
 self.mpos_vec.x = action.x
 self.mpos_vec.y = action.y

